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Random matrix approach to cross correlations in financial data
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We analyze cross correlations between price fluctuations of different stocks using methods of random matrix
theory (RMT). Using two large databases, we calculate cross-correlation ma€ia#sreturns constructed
from (i) 30-min returns of 1000 US stocks for the 2-yr period 1994 —188530-min returns of 881 US stocks
for the 2-yr period 1996-1997, ariii ) 1-day returns of 422 US stocks for the 35-yr period 1962-1996. We
test the statistics of the eigenvalugs of C against a “null hypothesis” — a random correlation matrix
constructed from mutually uncorrelated time series. We find that a majority of the eigenvaldalbwithin
the RMT boundg A _ ,\ . ] for the eigenvalues of random correlation matrices. We test the eigenval@s of
within the RMT bound for universal properties of random matrices and find good agreement with the results
for the Gaussian orthogonal ensemble of random matrices—implying a large degree of randomness in the
measured cross-correlation coefficients. Further, we find that the distribution of eigenvector components for the
eigenvectors corresponding to the eigenvalues outside the RMT bound display systematic deviations from the
RMT prediction. In addition, we find that these “deviating eigenvectors” are stable in time. We analyze the
components of the deviating eigenvectors and find that the largest eigenvalue corresponds to an influence
common to all stocks. Our analysis of the remaining deviating eigenvectors shows distinct groups, whose
identities correspond to conventionally identified business sectors. Finally, we discuss applications to the
construction of portfolios of stocks that have a stable ratio of risk to return.
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I. INTRODUCTION

A. Motivation

PACS nunt)er89.90+n, 05.45.Tp, 05.40.Fb

where o;=/(G?) —(G;)? is the standard deviation @®;,
and(---) denotes a time average over the period studied.

s , ) . We then compute the equal-time cross-correlation magrix
Quantifying correlations between different stocks is aith elements

topic of interest not only for scientific reasons of understand-
ing the economy as a complex dynamical system, but also
for practical reasons such as asset allocation and portfolio-
risk estimation[1—4]. Unlike most physical systems, where
one relates correlations between subunits to basic intera
tions, the underlying “interactions” for the stock market

Cij=(gi(t)g;(1)). ©)

By construction, the elements;; are restricted to the do-
fhain — 1<C;j;=1, whereC;; =1 corresponds to perfect cor-

problem are not known. Here, we analyze cross correlation
between stocks by applying concepts and methods of random
matrix theory, developed in the context of complex quantum
systems where the precise nature of the interactions betwe%n

subunits are not known.

In order to quantify correlations, we first calculate the
price change(“return”) of stocki=1,... N over a time
scaleAt,

Gi(H)=InS(t+At)—InS(t), (1)

where S(t) denotes the price of stock Since different
stocks have varying levels of volatilitystandard deviation
we define a normalized return

Gi(t) —(Gj)

gi(t)= )
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relations,Cj;=—1 corresponds to perfect anticorrelations,
2nd Ci;=0 corresponds to uncorrelated pairs of stocks.
The difficulties in analyzing the significance and meaning
of the empirical cross-correlation coefficier@ig are due to
everal reasons, which include the following:

(i) Market conditions change with time and the cross cor-
relations that exist between any pair of stocks may not be
stationary.

(i) The finite length of time series available to estimate
cross correlations introduces “measurement noise.”

If we use a long-time series to circumvent the problem of
finite length, our estimates will be affected by the nonstation-
arity of cross correlations. For these reasons, the empirically-
measured cross correlations will contain “random” contribu-
tions, and it is a difficult problem in general to estimate from
C the cross correlations that are not a result of randomness.

How can we identify fromC;;, those stocks that re-
mained correlatedon the averagein the time period stud-
ied? To answer this question, we test the statisticECof
against the “null hypothesis” of a random correlation
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matrix—a correlation matrix constructed from mutually un- deviating eigenvectors, the time stability decreases as the
correlated time series. If the properties®tonform to those  corresponding eigenvalues are closer to the RMT upper
of a random correlation matrix, then it follows that the con- bound.

tents of the empirically measurélare random. Conversely,  To test that the deviating eigenvalues are the only “genu-
deviations of the properties & from those of a random jne” information contained irC, we compare the eigenvalue
correlation matrix convey information about “genuine” cor- statistics ofC with the known universal properties of real
relations. Thus, our goal shall be to compare the properties %fymmetric random matrices, and we find good agreement
C with those_ of a random correlation matrix and separate thgith the RMT resuls. Using the notion of the inverse par-
content ofC into two groupsia) the part ofC that conforms  yieination ratio, we analyze the eigenvectors@fand find

to the properties of random correlation matridésoise”)  |3r4e values of inverse participation ratio at both edges of the
and (b) the part ofC that deviate“information” ). eigenvalue spectrum—suggesting a “random band” matrix
structure forC. Last, we discuss applications to the practical
goal of finding an investment that provides a given return
o _ ) o without exposure to unnecessary risk. In addition, it is pos-
The study of statistical properties of matrices with inde-sjple that our methods can also be applied for filtering out
pendent random elementsandom matrices-has a rich  “nojse” in empirically measured cross-correlation matrices
history originating in nuclear physicE5—13. In nuclear in a wide variety of applications.
physics, the problem of interest 50 years ago was to under- Thjs paper is organized as follows. Section Il contains a
stand the energy levels of complex nuclei, which the existingyrief description of the data analyzed. Section Il discusses
models failed to explain. Random matrix thedBMT) was  the statistics of cross-correlation coefficients. Section IV dis-
developed in this context by Wigner, Dyson, Mehta, and othtysses the eigenvalue distribution ®fand compares with
ers in order to explain the statistics of energy levels of COMRMT results. Section V tests the eigenvalue statisBctor
plex quantum systems. They postulated that the Hamiltoniapniversal properties of real symmetric random matrices and
describing a heavy nucleus can be described by a mhitrix sec. VI contains a detailed analysis of the contents of eigen-
with independent random elemertt; drawn from a prob-  vectors that deviate from RMT. Section VII discusses the
ability distribution[5-9]. Based on this assumption, a seriestime stability of the deviating eigenvectors. Section VIII con-
of remarkable predictions were made that are found to be ifains applications of RMT methods to construct “optimal”
agreement with the experimental ddt-7]. For complex portfolios that have a stable ratio of risk to return. Finally,

quantum systems, RMT predictions represent an averaggec. IX contains some concluding remarks.
over all possible interactiong8—10Q. Deviations from the

B. Background

universalpredic;ions of RMT identify system spec.ific, non- II. DATA ANALYZED
random properties of the system under consideration, provid-
ing clues about the underlying interactiorid —13. We analyze two different databases covering securities

Recent studiekl4,15 applying RMT methods to analyze from the three major US stock exchanges, namely, the New
the properties o€ show that~98% of the eigenvalues &  York Stock Exchangeg(NYSE), the American Stock Ex-
agree with RMT predictions, suggesting a considerable deshange(AMEX), and the National Association of Securities
gree of randomness in the measured cross correlations. It Bealers Automated QuotatidiNASDAQ).
also found that there are deviations from RMT predictions Database | We analyze the Trades and Quot@AQ)
for ~2% of the largest eigenvalues. These results prompt thdatabase, that documents all transactions for all major secu-

following questions: rities listed in all the three stock exchanges. We extract from
(1) What is a possible interpretation for the deviationsthis database time series of prides®)] of the 1000 largest

from RMT? stocks by market capitalization on the starting date January
(2) Are the deviations from RMT stable in time? 3, 1994. We analyze this database for the 2-yr period 1994 —
(3) What can we infer about the structure®ffrom these  1995[20]. From this database, we forin= 6448 records of

results? 30-min returns ofN=1000 US stocks for the 2-yr period

(4) What are the practical implications of these results? 1994-1995. We also analyze the prices of a subset compris-

In the following, we address these questions in detail. Wdng 881 stocksof those 1000 we analyze for 1994—-1995
find that the largest eigenvalue 6frepresents the influence that survived through two additional years 1996—-1997. From
of the entire market that is common to all stocks. Our analythis data, we extradt = 6448 records of 30-min returns of
sis of the contents of the remaining eigenvalues that deviath =881 US stocks for the 2-yr period 1996-1997.
from RMT shows the existence of cross correlations between Database Il We analyze the Center for Research in Secu-
stocks of the same type of industry, stocks having large marity Prices (CRSP database. The CRSP stock files cover
ket capitalization, and stocks of firms having business in cereommon stocks listed on NYSE beginning in 1925, the
tain geographical aredd46-18. By calculating the scalar AMEX beginning in 1962, and the NASDAQ beginning in
product of the eigenvectors from one time period to the next1972. The files provide complete historical descriptive infor-
we find that the “deviating eigenvectors” have varying de- mation and market data including comprehensive distribu-
grees of time stability, quantified by the magnitude of thetion information, high, low, and closing prices, trading vol-
scalar product. The largest two to three eigenvectors arames, shares outstanding, and total returns. We analyze daily
stable for extended periods of time, while for the rest of thereturns for the stocks that survive for the 35-yr period 1962—
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1996 and extract. =8685 records of 1-day returns fdf  where A is an NXL matrix containingN time series ofL
=422 stocks. random elements; ,, with zero mean and unit variance, that
are mutually uncorrelated.

Statistical properties of random matrices suchRasire
known[26,27]. Particularly, in the limitN—oco, L—o, such

We analyze the distributiorP(Cj;) of the elements thatQ=L/N (>1) is fixed, it was shown analyticall27]
{Cij;i#]} of the cross-correlation matri@ . We first exam-  that the probability density functioR,,(\) of eigenvalues
ine P(C;;) for 30-min returns from the TAQ database for the of the random correlation matrik is given by
2-yr periods 1994-1995 and 1996-19%Hg. 1(a)]. First,
we note thatP(C;;) is asymmetric and centered around a PO _Q VOV =N (N =N0) 5
positive mean value(Cjj)>0), implying that positively cor- m(N) = 2 )N ' 6)
related behavior is more prevalent than negatively correlated
(anticorrelategibehavior. Second, we find theE;;) depends  for N within the bounds\_<\;<\ . , wherex _ and\ , are
on time, e.g., the period 1996-1997 shows a lag&;)  the minimum and maximum eigenvaluesRf respectively,
than the period 1994-1995. We contra(C;;) with a  given by
control—a correlation matrixR with elementsR;; con-
structed fromN=1000 mutually uncorrelated time series, N :1+£+2\ﬁ
each of lengthL=6448, generated using the empirically - Q™ Q
found distribution of stock returi®1,22. Figure 1a) shows o _
thatP(R;;) is consistent with a Gaussian with zero mean, inFor finiteL andN, the abrupt cutoff oP,(\) is replaced by
contrast taP(C;;). In addition, we see that the partB{C;;) @ rapidly decaying edgg28]. Note that the expression Eq.
for C;;<0 (which corresponds to anticorrelatioris within ~ (6) is exact for the case of Gaussian-distributed matrix ele-
the Gaussian curve for the control, suggesting the possibilitfnentsa; , . Numerically, we find that for the case of power-
that the observed negative cross correlationS imay be an law distributeda, ,,, the eigenvalue distribution of the con-
effect of randomness. Furthermore, our analysis of a surrdrol correlation matrix shows good agreement with Eg),
gate correlation matrix generated from the randomized emas long as the power-law exponents are outside they Le
pirical time series of returns show good agreement with thé&table domairj29]. In particular, for the case of power-law
Gaussian curve for the contrfffig. 1(b)]. distributed time series with exponent identical to that for

Figure Xc) showsP(C;;) for daily returns from the CRSP  Stock return421,22, we find good agreement with E(f).
database for five nonoverlapping 7-yr subperiods in the 35-yr We next compare the eigenvalue distributiB) of C
period 1962—-1996. We see that the time dependen¢g;pf ~ With Pr(X) [14]. We examineAt=30-min returns forN
is more pronounced in this plot. In particular, the period=1000 stocks, each containirig=6448 records. Thu®
containing the market crash of October 19, 1987 has the 6.448, and we obtain _=0.36 and\ , =1.94 from Eqg.
largest average valu€;;), suggesting the existence of cross (7). We compute the eigenvaluas of C, where; are rank
correlations that are more pronounced in volatile period®rdered §;,;>\;) [30]. Figure 3a) compares the probabil-
than in calm period§23—25. We test this possibility by ity distribution P(\) with P.,(\) calculated forQ=6.448.
comparing(C;;) with the average volatility of the market We note the presence of a well-defined “bulk” of eigenval-
(measured using the S&P 500 indexvhich shows large ues which fall within the boundBh _ ,\ ] for P.(\). We
values of(Cij> during periods of large volatilityFig. 2). also note deviations for a few~(20) largest and smallest
eigenvalues. In particular, the largest eigenvalygy~50
for the 2-yr period, which is=25 times larger than
=1.94.

Since Eq.(6) is strictly valid only forL— andN—x,

As stated above, our aim is to extract information aboutwe must test that the deviations that we find in Fig) 3or
cross correlations fror€. So, we compare the properties of the largest few eigenvalues are not an effect of finite values
C with those of a random cross-correlation mafrbd]. In  of L and N. To this end, we contrad®(\) with the RMT
matrix notation, the correlation matrix can be expressed asresult P,,(\) for the random correlation matrix of Eg5),

constructed fronN= 1000 mutually uncorrelated time series
1 generated to have identical power-law tails as the empirical
C=1{G G, (4)  distribution of returns[21], each of the same length
=6448. We find good agreement with E@) [Fig. 3b)],
thus showing that the deviations from RMT found for the
largest few eigenvalues in Fig(e are not a result of the fact
thatL andN are finite, or of the fact that returns are fat tailed.

As an additional test, we randomize the empirical time
series of returns, thereby destroying all the equal-time corre-
lations that exist. We then compute a surrogate correlation
R= EAAT 5) matrix. The eigenvalue distribution for this surrogate corre-

L ' lation matrix[Fig. 3(c)] shows good agreement with E®),

Ill. STATISTICS OF CORRELATION COEFFICIENTS

()

IV. EIGENVALUE DISTRIBUTION OF THE
CORRELATION MATRIX

where G is an NXL matrix with elements {g;
=g;(mAt);i=1,... N; m=0,... L—1}, andG' denotes
the transpose o6. Therefore, we consider a random corre-
lation matrix
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~ 10" (b) Shuffled ]
9/ . FIG. 2. The stair-step curve shows the average value of the
S L 30-min returns correlation coefficient¢C;;), calculated from 422 422 correlation
.‘S’ (TAQ database) matricesC constructed from daily returns using a slidihg= 965
S 107 L ] day time window in discrete steps bf5=193 days. The diamonds
= correspond to the largest eigenvalhg,, (scaled by a factor 4
2 X 107) for the correlation matrices thus obtained. The bottom curve
;E 107 ¥ 3 shows the S&P 500 volatilityscaled for clarity calculated from
_§ 4 daily records with a sliding window of length 40 days. We find that
g 10 3 3 both (Cj;) and \ 4, have large values for periods containing the
R~ Y market crash of October 19, 1987.
100 ¢ .
, : : : confirming that the largest eigenvalues in Figp)3are genu-
10 T - - ine effect of equal-time correlations among stocks.
- (©)1-day returns Figure 4 comparesP(\) for C calculated usingL
O 10° b y ] =1737 daily returns of 422 stocks for the 7-yr period 1990—
= (CRSP database) 1996. We find a well-defined bulk of eigenvalues that fall
B — 1962-68 within P,,(\), and deviations fromP,,(\) for large
210 ¢ — 1969-75 1 eigenvalues—similar to what we found fakt=30 min
~ === 1976-82 [Fig. 3(@]. Thus, a comparison d¥(\) with the RMT result
210 | - }ggg:gg ] P.m(\) allows us to distinguish theulk of the eigenvalue
= spectrum ofC that agrees with RMTrandom correlations
.§ 1o from the deviationggenuine correlations
1
~ 3 V. UNIVERSAL PROPERTIES: ARE THE BULK OF
107 L L EIGENVALUES OF C CONSISTENT WITH RMT?
-0.5 0.0 0.5 1.0

Cross - correlation coefficient C; The presence of a well-defined bulk of eigenvalues that

agree withP,,(\) suggests that the contents@fare mostly
random except for the eigenvalues that deviate. Our conclu-
sion was based on the comparison of the eigenvalue distri-

FIG. 1. (@ P(C;;) for C calculated using 30-min returns of bution P(A) ?f C V,V'th that of random mgtnces of the .type
1000 stocks for the 2-yr period 1994-19¢lid line) and 881 R:(lll-_)A_A '_Qu't? generally, comparison _O_f the eigen-
stocks for the 2-yr period 1996—199dashed ling For the period  value distribution withP(X) alone is not sufficient to sup-
1996-1997(C;;)=0.06, larger than the valu¢C;)=0.03 for POt the possibility that the bulk of the eigenvalue spectrum
1994-1995. The narrow parabolic curve shows the distribution of C is random. Random matrices that have drastically dif-
correlation coefficients for the contrél(R;;) of Eq. (5), which is ~ ferent P(A) share similar correlation structures in their
consistent with a Gaussian distribution with zero me¢anP(C;)  eigenvalues—universal properties—that depend only on the
(circles for the correlation matrix calculated using randomized 30-general symmetries of the matrigl1—-13. Conversely, ma-
min returns of 1000 stock§1994-199% shows good agreement trices that have the same eigenvalue distribution can have
with the control (solid curve. (c) P(Cj;;) calculated from daily drastically different eigenvalue correlations. Therefore, a test
returns of 422 stocks for five 7-yr subperiods in the 35 years 1962-6f randomness of involves the investigation of correlations
1996. We find a large value dfC;;)=0.18 for the period 1983— in the eigenvalues;.

1989, compared with the avera¢@;;)=0.10 for the other periods. Since by definitiorC is a real symmetric matrix, we shall
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(a)30-min returns 1§94—95 ‘ largest
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Eigenvalue \ Ei Tue \
= genvalue
N—
~ ' s ‘ ' ] FIG. 4. P(\) for C constructed from daily returns of 422 stocks
Shuffled 30-min returns ] o X .
-‘E‘ 1.0 _(C) h for the 7-yr period 1990-1996. The solid curve shows the RMT
5 ;rmo”) ] result P,,(\) of Eq. (6]) using N=422 andL=1737. The dot-
'; ] dashed curve shows a fit ®(\) usingP,,(\) with A, and\_ as
= 05 ] free parameters. We find similar results as found in Fig) &r
= 1 30-min returns. The largest eigenval(reot shown has the value
S 0.0 ' : ‘ ' Na2o=46.3.
S 0.0 1.0 2.0 3.0 4.0 5.0

Eigenvalue A (5)] that we are interested in are not strictly GOE-type ma-

FIG. 3. (a) Eigenvalue distributioP(\) for C constructed from trlcgs, but rather belong. to a special ensemble CaIIe.d the
the 30-min returns for 1000 stocks for the 2-yr period 1994—1995. chiral” GOE [13,32. This can be seen by the following
The solid curve shows the RMT rest#(\) of Eq. (6). We note ~ argument. Define a matrig,
several eigenvalues outside the RMT upper boknd(shaded re-
gion). The inset shows the largest eigenvalugos~50>\ , . (b) 0 A/\/[

AT/JL 0

P(\) for the random correlation matriR, computed fromN
=1000 computer-generated random uncorrelated time series with

length L=6448 shows good agreement with the RMT result, EQ.The eigenvaluey of B are given by det(/zl—AAT/L)=O
(6) (solid curve. (c) Eigenvalue distribution for a surrogate corre- and similarly, the eigenvalues of R are given by de|
lation matrix constructed from randomized 30-min returns shows AAT/L):O_ Thus, all nonzero eigenvalues Bfoccur in
good agreement with E@6) (solid curve. '

®

pairs, i.e., for every eigenvaldeof R, y.= = \/\ are eigen-
values ofB. Since the eigenvalues occur pairwise, the eigen-
test the eigenvalue statisti€s for universal features of ei- yalue spectra of botB andR have special properties in the
genvalue correlations displayed by real symmetric randonheighborhood of zero that are different from the standard
matrices. Consider & X M real symmetric random matr®  GOE [13,37. As these special properties decay rapidly as
with off-diagonal elements;; , which fori<j are indepen- one goes further from zero, the eigenvalue correlatiorR of
dent and identically distributed with zero meg®;)=0 and  in the bulk of the spectrum are still consistent with those of
variance(&zj>>0. It is conjectured based on analyti¢8ll]  the standard GOE. Therefore, our goal shall be to test the
and extensive numerical evidenf#l] that in the limit M bulk of the eigenvalue spectrum of the empirically measured
— o0, regardless of the distribution of eleme&s, this class  cross-correlation matri€ with the known universal features
of matrices, on the scale of local mean eigenvalue spacingf standard GOE-type matrices.
display the universal properti¢sigenvalue correlation func- In the following, we test the statistical properties of the
tiong) of the ensemble of matrices whose elements are diseigenvalues oC for three known universal properti¢sl—
tributed according to a Gaussian probability measure—called3] displayed by GOE matrices(i) the distribution of
the Gaussian orthogonal ensem@&OE) [11]. nearest-neighbor eigenvalue spacimyg(s), (i) the distri-
Formally, GOE is defined on the space of real symmetridoution of next-nearest-neighbor eigenvalue spacihgg(s),
matrices by two requiremenfd1]. The first is that the en- and (iii) the “number variance” statisti& ?.
semble is invariant under orthogonal transformations, i.e., for The analytical results for the three properties listed above
any GOE matrixZ, the transformationZz—Z'=W'ZW,  hold if the spacings between adjacent eigenvaluask or-
where W is any real orthogonal matrix¥y W'=1), leaves dered are expressed in units af/erageeigenvalue spacing.
the joint probability P(Z)dZ of elementsZ;; unchanged: Quite generally, the average eigenvalue spacing changes
P(Z')dZ'=P(Z)dZ. The second requirement is that the el- from one part of the eigenvalue spectrum to the next. So, in
ements{Z;; ;i<j} are statistically independefit1]. order to ensure that the eigenvalue spacing has a uniform
By definition, random cross-correlation matricBs[Eq.  averagevalue throughout the spectrum, we must find a trans-
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formation called “unfolding,” which maps the eigenvalues 1.0 . .

\; to new variables called “unfolded eigenvalueg”, whose @ Fitto Py (s)
distribution is uniform[11-13. Unfolding ensures that the T — Py (5)
distances between eigenvalues are expressed in units of local
mean eigenvalue spacindl], and thus facilitates compari-
son with theoretical results. The procedures that we use for
unfolding the eigenvalue spectrum are discussed in the Ap-
pendix.

Q
(o]
T
|
1
/

1

e
»
T

AT 1994-95
N Ar=30 min

A

©
FS

A. Distribution of nearest-neighbor eigenvalue spacings

Probability density, P_(s)
(=]
[V

We first consider the eigenvalue spacing distribution,
which reflects two point as well as eigenvalue correlation
functions of all orders. We compare the eigenvalue spacing
distribution of C with that of GOE random matrices. For 1
GOE matrices, the distribution of “nearest-neighbor” eigen- Nearest - neighbor spacing, s
value spacings= &, 1— & is given by[11-13 15

©
o

s T (b)
Pcoe(s) = 7eXP( - ZSZ> ) 9 — Py(s’)

1
%

often referred to as the “Wigner surmisg33]. The Gaussian
decay ofPgpg(s) for larges[bold curve in Fig. 5a)] implies
thatPgog(S) “probes” scales only of the order of one eigen-
value spacing. Thus, the spacing distribution is known to be
robust across different unfolding procedufés].

We first calculate the distribution of the “nearest-neighbor
spacings’s= ¢, 1 — & of the unfolded eigenvalues obtained
using the Gaussian broadening procedure. Figtaeshows
that the distributionP,(s) of nearest-neighbor eigenvalue 0.0
spacings foiC constructed from 30-min returns for the 2-yr o 1 2 3
period 1994 -1995 agrees well with the RMT refRio(s) Next- nearest - neighbor spacing, s’
for GOE matrices.

Identical results are obtained when we use the alternative FIG. 5. (a) Nearest-neighbaomn) spacing distributiorP,,(s) of
unfolding procedure of fitting the eigenvalue distribution. In the unfolded eigenvalueg of C constructed from 30-min returns
addition, we test the agreement Bf,(s) with RMT results ~ for the 2-yr period 1994-1995. We find good agreement with the

by fitting P.(s) to the one-parameter Brody distribution GOE resultPog(s) [Eq.(9)] (solid ling). The dashed line is a fit to
[12,13 the one-parameter Brody distributid?y, [Eq. (10)]. The fit yields

B£=0.99+0.02, in good agreement with the GOE predict@n 1.
Pg(s)=B(1+ B)sPexp(—Bs' ), (10 A Kolmogorov-Smirnov test shows that the GOE is tilnes more

likely to be the correct description than the Gaussian unitary en-
where B={T'([8+2]/[B+1])}**~A. The caseB=1 corre- semble, and Htimes more likely than the GSHb) Next-nearest-
sponds to the GOE ang@=0 corresponds to uncorrelated neighbor(nnn eigenvalue-spacing distributioP,,{s) of C com-
eigenvalues(Poisson-distributed spacingsWe obtain 3 pared to the nearest-neighbor spacing distribution of GSE shows
=0.99+0.02, in good agreement with the GOE predictiongOOd agreement. AK_oImogorov—Smi_rno_v test cannot reject the _hy-
B=1. To test nonparametrically th&®go(s) is the correct pothesis thaPgsgs) is the correct dlstrlbutlo_n at the 40% _confl-
description forP, (s), we perform the Kolmogorov-Smirnov de_nce level. The resul_ts shown above are using the Gagssmn broad-
test. We find that at the 80% confidence level, a®""9 PFOC?d“re- . U.S'ng the second procedure of fit#)
Kolmogorov-Smirnov test cannot reject the hypothesis tha{append'x yields similar results.
the GOE is the correct description f&,(s).

Next, we analyze the nearest-neighbor spacing distribu
tion P,,(s) for C constructed from daily returns for four 7-yr A second independent test for GOE is the distribution
periods(Fig. 6). We find good agreement with the GOE re- P,,(s’) of nextnearest-neighbor spacings= ¢, ,— & be-
sult of Eqg. (9), similar to what we find forC constructed tween the unfolded eigenvalues. For matrices of the GOE
from 30-min returns. We also test that both of the unfoldingtype, according to a theorem due to REgIO], the next-
procedures discussed in the Appendix yield consistent renearest-neighbor spacings follow the statistics of the Gauss-
sults. Thus, we have seen that the eigenvalue-spacing distian symplectic ensemblg&SE [11-13,34. In particular, the
bution of empirically measured cross-correlation matriCes distribution of next-nearest-neighbor spaciiyg(s’) for a
is consistent with the RMT result for real symmetric randomGOE matrix is identical to the distribution of nearest-
matrices. neighbor spacings of the Gaussian symplectic ensemble

Probability density, P_ (s’)

B. Distribution of next-nearest-neighbor eigenvalue spacings
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0 1 2 . 0 '1 2 3 FIG. 7. (8 Number variance?(¢) calculated from the un-
Nearest - neighbor spacing, s folded eigenvalueg; of C constructed from 30-min returns for the

2-yr period 1994-1995. We used Gaussian broadening procedure

FIG. 6. Nearest-neighbor spacing distributiBgs) of the un- it the broadening parameter= 15. We find good agreement with
folded eigenvalueg; of C computed from the daily returns of 422 1o GOE result of Eq(13) (solid curve. The dashed line corre-

stocks for the 7-yr periodsa) 1962-1968,(b) 1976-1982,(C)  gponds to the uncorrelated ca&@oisson. For the range off
1983-1989, andd) 1990-1996. We find good agreement with the ghown, unfolding by fitting also yields similar results.

GOE result(solid curvg. The unfolding was performed by using
the procedure of fitting the cumulative distribution of eigenvalueswhere Y(x) (called “two-level cluster function) is related
(appendiy. Gaussian broadening procedure also yields similar retg the two-point correlation functiofc.f., Ref.[11], p.79.

sults. For the GOE caseY(x) is explicitly given by
(GSB [11,13. Figure %b) shows thatP,,(s’) for the same Y(x)=82(x) + d—Sst(x’)dx’, (14)
data as Fig. &) agrees well with the RMT result for the dxJx

distribution of nearest-neighbor spacings of GSE matrices,
where

- 64 sin(7x)
Pasds) = 367733 exp( ~ 9.8 ) 11 s(x)= _ (15)
X

, , For large values of, the number varianc&? for GOE has
We find that at the 40% confidence level, a Kolmogorov-the “intermediate” behavior

Smirnov test cannot reject the hypothesis that the GSE is the
correct description foP,,(S). 32~In¢. (16)

Figure 7 shows tha®?(¢) for C calculated using 30-min
C. Long-range eigenvalue correlations returns for 1994-1995 agrees well with the RMT result of
To probe for larger scales, pair correlatiafisvo-point”  Ed. (13). For the range of shown in Fig. 7, both unfolding
correlation3 in the eigenvalues, we use the statigttoften ~ Procedures yield similar results. Consistent results are ob-
called the “number variance,” which is defined as the vari-tained forC constructed from daily returns.
ance of the number of unfolded eigenvalues in intervals of

length€around eaclt; [11-13, D. Implications
To summarize this section, we have tested the statistics of
2 = — 2 i)
2AO=(EO= €1, (12 ¢ for universal features of eigenvalue correlations displayed

by GOE matrices. We have seen that the distribution of the
wheren(&,€) is the number of unfolded eigenvalues in the nearest-neighbor spacings(s) is in good agreement with
interval [¢é—€/2, é+4€/2] and (- --); denotes an average the GOE result. To test whether the eigenvalue€ diisplay
over all £. If the eigenvalues are uncorrelate&t?~¢. For ~ the RMT results for long-range two-point eigenvalue corre-

the opposite extreme of a “rigid” eigenvalue spectrgeng.,  lations, we analyzed the number varia®and found good
simple harmonic oscillatoy 32 is a constant. Quite gener- agreement with GOE results. Moreover, we also find that the
ally, the number varianc®? can be expressed as statistics of next-nearest-neighbor spacings conform to the

predictions of RMT. These findings show that the statistics of

‘ the bulk of the eigenvalues of the empirical cross-correlation

S2(0)=¢— zf (£—x)Y(x)dx, (13)  matrix C is consistent with those of a real symmetric random
0 matrix. Thus, information about genuine correlations are
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0.8 . - . . - . smallest eigenvalues. The remaining eigenvectors have val-
A 299 ues of kurtosis that are consistent with the Gaussian value 3.
@us A <A<, 1p©m 1 Consider next the “deviating” eigenvalues, larger than

the RMT upper boundy;>\, . Figures 8b) and &c) show
that, for deviating eigenvalues, the distribution of eigenvec-
tor componentg(u) deviates systematically from the RMT
result p,,(u). Finally, we examine the distribution of the

: components of the eigenvectat®® corresponding to the
b’ @u™ | largest eigenvalue ;o00. Figure &d) shows thatp(u®®9

I deviates remarkably from a Gaussian, and is approximately
uniform, suggesting that all stocks participate. In addition,

0.6

0.4 1t il -

o o
[w] N
T
1
T
1

Probability density p(u)
o
»

04 1 11 1 we find that almost all components af® have the same
02 1L I i sign, thus causing(u) to shift to one side. This suggests
J 1 that the significant participants of eigenvectdf have a
0.0 ' i
I a— > 7 — > 4 gpmmon component that affects all of them with the same
, ias.
Eigenvector components, u
FIG. 8. (a) Distribution p(u) of eigenvector components for one B. Interpretation of the _|arge§t eigenvalue
eigenvalue in the bulk - <A<\, shows good agreement with the and the corresponding eigenvector
RMT prediction of Eq.(17) (solid curve. Similar results are ob-  gjince all components participate in the eigenvector corre-

. . : 996 . . . H
tained for other eigenvalues in the bujiu) for (b) U™ and(©)  gponding to the largest eigenvalue, it represents an influence
U™, corresponding to eigenvalues larger than the RMT uppetnat js common to all stocks. Thus, the largest eigenvector
bound ., (shaded region in Fig.)3(d) p(u) for u” "™ deviates o ntifies the qualitative notion that certain newsbrealg,
significantly from the Gaussian prediction of RMT. The above plotsan interest rate increasaffect all stocks aliké4]. One can
?g; ngggoc\fgiﬁf,do:,ﬂ?] ;?n:g :rézﬁftrgséagngfué_eyé f?(fr:'fd also interpret the largest eigenvalue and its corresponding
daily returné eigenvector as the collective “response” of the entire market
' to stimuli. We quantitatively investigate this notion by com-
contained in the deviations from RMT, which we analyzeP2""9 the prolei%ggﬁsc?"ar produgtof the time serie$s on
below. the eigenvectou™"", with a standard measure of US stock
market performance—the retur@sg(t) of the S&P 500 in-
VI. STATISTICS OF EIGENVECTORS dex. We calculate the projectic®'%qt) of the time series

G;(t) on the eigenvecton'®®,

A. Distribution of eigenvector components
0

100
The deviations oP(\) from the RMT resultP,,(\) sug- 1000+ — 1000~ .
gests that these deviations should also be displayed in the G ,Zl Ui OG’(t)' (18
statistics of the corresponding eigenvector componfltk o 100 )
Accordingly, in this section, we analyze the distribution of By definition, G*°°Yt) shows the return of the portfolio de-

eigenvector components. The distribution of the componentiined by u*®®. We compareG*®{t) with Gsgt), and find

{u;1=1, ... N} of eigenvectou* of a random correlation "émarkably similar behavior for the two, indicated by a large
matrix R should conform to a Gaussian distribution with Value of the correlation coefficieqGsH(t) G**{1)) =0.85.
shows relatively narrow scatter around a linear fit. Thus, we
1 —u2 interpret the eigenvecton!®® as quantifying market-wide
prm(U)= —zex T) (17 influences on all stockl4,15.

We analyzeC at larger time scales aft=1 day and find
similar results as above, suggesting that similar correlation
“structures exist for quite different time scales. Our results for

he distribution of eigenvector components agree with those
eported in Ref[14], whereAt=1-day returns are analyzed.
We next investigate how the largest eigenvalue changes as a
function of time. Figure 2 shows the time depend€f&® of

First, we compare the distribution of eigenvector compo
nents ofC with Eg. (17). We analyzep(u) for C computed
using 30-min returns for 1994-1995. We choose one typic
eigenvalue\, from the bulk \_<M\,<\,) defined by
P.m(\) of Eq. (6). Figure 8a) shows thaip(u) for a typical
uk from the bulk shows good agreement with the RMT resulty o largest eigenvalue\g,;) for the 35-yr period 1962—
prm(U). Similar analysis on the other eigenvectors belonging; gog \we find large values of the largest eigenvalue during

to eigenvalue; within the bulk yields qonsisten.t results, inperiods of high market volatility, which suggests strong col-
agreement with the results of the previous sections that thFective behavior in regimes of high volatility.

bulk agrees with random matrix predictions. We test the way of statistically modeling an influence that is

agreement of the distributiop(u) with pym(u) by calculat- o mon to all stocks is to express the ret@nof stocki as
ing the kurtosis, which for a Gaussian has the value 3. We

find significant deviations fronp,,,(u) for ~20 largest and Gi(t)=a;+ BM(t)+¢(t), (19

066126-8



RANDOM MATRIX APPROACH TO CROSS. .. PHYSICAL REVIEW E 65 066126
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FIG. 10. Probability distributioriP(C;;) of the cross-correlation
coefficients for the 2-yr period 1994-1995 before and after remov-
ing the effect of the largest eigenvaldgyy,. Note that removing
the effect of\ g shifts P(C;;) toward a smaller average value
(C;j)=0.002 compared to the original val¢€;;)=0.03.

C. Number of significant participants in an eigenvector:
Inverse participation ratio

Normalized G*"(t)

. Having studied the interpretation of the largest eigenvalue
that deviates significantly from RMT results, we next focus
At=30 min on the remaining eigenvalues. The deviations of the distribu-
-10 : . : tion of components of an eigenvecidf from the RMT pre-
-10 -5 0 5 10 diction of a Gaussian is more pronounced as the separation
Normalized G(1) from the RMT upper bound ,— X\, increases. Since prox-
) , imity to A, increases the effects of randomness, we quantify
FIG. 9. (@) S&P 500 returns aft=30 min regressed against ,o"nmber of components that participate significantly in
the 30-min return on the portfoli@™" [Eq. (18)] defined by the o5y aigenvector, which in turn reflects the degree of devia-
eigenvectonu™>, for the 2-yr period 1994-1995. Both axes are tion from RMT résult for the distribution of eigenvector

scaled by their respective standard deviations. A linear regression moonents. To this end. w the notion of the inver
yields a slope 0.850.09. (b) Return(in units of standard devia- components. 10 this end, we use the notion or the erse

tions) on the portfolio defined by an eigenvector corresponding topart|0|pat|0n rati(IPR), of_ten appl;eljt(i_ln Iogallzatlon theory
an eigenvalue\ 4o Within the RMT bounds regressed against the [13,55. The IPR of the eigenvectar” is defined as
normalized returns of the S&P 500 index shows no significant de-

N
pendence. Both axes are scaled by their respective standard devia- |kEZ [uk] 4 (20)
tions. The slope of the linear fit is 0.049.011, close to 0. et

where M(t) is an additive term that is the same for all whereuy, 1=1, ...,1000 are the components of eigenvector
stocks{ e(t)) =0, a; and3; are stock-specific constants, and U. The meaning ofl* can be illustrated by two limiting
(M(t)e(t))=0. This common ternM(t) gives rise to cor- casesii) a vector with identical componenu%<E 1/JN has
relations between any pair of stocks. The decomposition of*=1/N, whereas(ii) a vector with one componem’{=1

Eq. (19 forms the basis of widely used economic models,and the remainder zero h#=1. Thus, the IPR quantifies
such as multifactor models and the Capital Asset Pricinghe reciprocal of the number of eigenvector components that
model[4,36—53. Sinceu'® represents an influence that is contribute significantly.

common to all stocks, we can approximate the tevit(it) Figure 11a) showsl for the case of the control of E¢6)
with G1°°t). The parameters; and B; can therefore be using time series with the empirically found distribution of
estimated by an ordinary least squares regression. returns[21]. The average value df is (1)~3x10 3~ 1/N

Next, we remove the contribution &°°{t) to each time  with a narrow spread, indicating that the vectorseareended
seriesG(t), and construc€ from the residualg;(t) of Eq.  [55,56—i.e., almost all components contribute to them.
(19). Figure 10 shows that the distributid®(C;;) thus ob-  Fluctuations around this average value are confined to a nar-
tained has significantly smaller average valGg ), showing  row range(standard deviation of 1:610™%).

that a large degree of cross correlations containe@ an Figure 11b) shows that* for C constructed from 30-min
be attributed to the influence of the largest eigenvéhrel  returns from the period 1994-1995, agrees withof the
its corresponding eigenvecjdi53,54. random control in the bulkN_<\;<\.). In contrast, the
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o . . FIG. 12. All 1C eigenvector components af*® plotted against
~FIG. 11. (@ Inverse participation rati¢lPR) as a function of  market capitalizatiorin units of U.S. dollarsshows that firms with
eigenvalue\ for the random cross-correlation matiikof Eq. (6)  |arge market capitalization contribute significantly. The straight

constructed usindN=1000 mutually uncorrelated time series of |ine, which shows a logarithmic fit, is a guide to the eye.
length L=6448. IPR forC constructed from(b) 6448 records of

30-min returns for 1000 stocks for the 2-yr period 1994—-196p,
1737 records of 1-day returns for 422 stocks in the 7-yr period
1990-1996, andd) 1737 records of 1-day returns for 422 stocks in ~ We quantify the number of significant participants of an
the 7-yr period 1983-1989. The shaded regions show the RMEigenvector using the IPR, and we examine tH& ¢dmpo-
bounds[A ;A _]. nents of eigenvecton® for common feature§17]. A direct
examination of these eigenvectors, however, does not yield a
edges of the eigenvalue spectrum@fhow significant de- straightforward interpretation of their economic relevance.
viations of IX from (I). The largest eigenvalue hasl/ To interpret their meaning, we note that the largest eigen-
~600 for the 30-min datfFig. 11(b)] and 1IX~320 for the  value is an order of magnitude larger than the others, which
1-day datg[Figs. 1Xc) and 11d)], showing that almost all constrains the remainin—1 eigenvalues since T=N.
stocks participate in the largest eigenvector. For the rest ofhus, in order to analyze the deviating eigenvectors, we must
the large eigenvalues which deviate from the RMT upperemove the effect of the largest eigenvalgqy.
bound, ¥ values are approximately four to five times larger In order to avoid the effect 0f o0, and thusz%qt), on
than(l), showing that there are varying numbers of stocksthe returns of each stodg;(t), we perform the regression of
contributing to these eigenvectors. In addition, we also findeg. (19), and compute the residuadgt). We then calculate
that there are large values for vectors corresponding to few the correlation matrixC using €;(t) in Eq. ( 2) and Eq.(3).
of the small eigenvalues;~0.25<\_. The deviations at Next, we compute the eigenvectau§ of C thus obtained,
both edges of the eigenvalue spectrum are considerablgnd analyze their significant participants. The eigenvector
larger thar(1), which suggests that the vectors émealized  u®®® contains approximately 1%°°=300 significant partici-
[55,56—i.e., only a few stocks contribute to them. pants, which are all stocks with large values of market capi-
The presence of vectors with large valued'oélso arises talization. Figure 12 shows that the magnitude of the eigen-
in the theory of Anderson localizatid®7]. In the context of ~ vector components ofu®®® shows an approximately
localization theory, one frequently finds “random band ma-logarithmic dependence on the market capitalizations of the
trices” [55] containing extended states with smiilin the  corresponding stocks.
bulk of the eigenvalue spectrum, whereas edge states are We next analyze the significant contributors of the rest of
localized and have large’. Our finding of localized states the eigenvectors. We find that each of these deviating eigen-
for small and large eigenvalues of the cross-correlation mavectors contains stocks belonging to similar or related indus-
trix C is reminiscent of Anderson localization and suggestdries as significant contributors. Table | shows the ticker sym-
thatC may have a random band matrix structure. A randonbols and industry groupgStandard Industry Classification
band matrixB has element®;; independently drawn from (SIC) codd for stocks corresponding to the ten largest eigen-
different probability distributions. These distributions are of-vector components of each eigenvector. We find that these
ten taken to be Gaussian parametrized by their varianceigenvectors partition the set of all stocks into distinct groups
which depends o andj. Although such matrices are ran- that contain stocks with large market capitalizatiar?°f),
dom, they still contain probabilistic information arising from stocks of firms in the electronics and computer industry
the fact that a metric can be defined on their set of indices (u®%®), a combination of gold mining and investment firms
Arelated, but distinct way of analyzing cross correlations by(u®®andu®?), banking firms (°%, oil and gas refining and
defining “ultrametric” distances has been studied in Ref.equipment (%9, auto manufacturing firmsuf®), drug
[16]. manufacturing firms®®Y), and paper manufacturingi?®.

D. Interpretation of deviating eigenvectorsu®%°—u%%°
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TABLE I. Largest ten components of the eigenvectat¥ up tou®®L. The columns show ticker symbols, industry type, and the standard
industry classificatiofSIC) code, respectively.

Ticker Industry Industry code Ticker Industry Industry code
1999
XON Oil & gas equipment/services 2911 CTC Telecom services/foreign 4813
PG Cleaning products 2840 PB Beverages—soft drinks 2086
INJ Drug manufacturers/major 2834 YPF Independent oil and gas 2911
KO Beverages-soft drinks 2080 TXN Semiconductor—broad line 3674
PFE Drug manufacturers/major 2834 MU Semiconductor—memory chips 3674
BEL Telecom services/domestic 4813 u2%4
MOB Oil & gas equipment/services 2911 BAC Money center banks 6021
BEN Asset management 6282 CHL Wireless communications 4813
UN Food—major diversified 2000 BK Money center banks 6022
AIG Property/casualty insurance 6331 ccl Money center banks 6021
u998 CMB Money center banks 6021
TXN Semiconductor—broad line 3674 BT Money center banks 6022
MU Semiconductor—memory chips 3674 JPM Money center banks 6022
LSI Semiconductor—specialized 3674 MEL Regional—northeast banks 6021
MOT Electronic equipment 3663 NB Money center banks 6021
CPQ Personal computers 3571 WFC Money center banks 6021
CcY Semiconductor—broad line 3674 1993
TER Semiconductor equip/materials 3825 BP Oil and gas equipment/services 2911
NSM Semiconductor—broad line 3674 MOB  Oil and gas equipment/services 2911
HWP Diversified computer systems 3570 SLB Oil and gas equipment/services 1389
IBM Diversified computer systems 3570 TX Major integrated oil/gas 2911
u®’ uCL Oil and gas refining/marketing 1311
PDG Gold 1040 ARC Oil and gas equipment/services 2911
NEM Gold 1040 BHI Oil and gas equipment/services 3533
NGC Gold 1040 CHV Major integrated oil/gas 2911
ABX Gold 1040 APC Independent oil and gas 1311
ASA Closed, end fundgold) 6799 AN Auto dealerships 2911
HM Gold 1040 1992
BMG Gold 1040 FPR Auto manufacturers/major 3711
AU Gold 1040 F Auto manufacturers/major 3711
HSM General building materials 5210 C Auto manufacturers/major 3711
MU Semiconductor—memory chips 3674 GM Auto manufacturers/major 3711
u99%6 TXN Semiconductor—broad line 3674
NEM Gold 1040 ADI Semiconductor—broad line 3674
PDG Gold 1040 CcY Semiconductor—broad line 3674
ABX Gold 1040 TER Semiconductor equip/materials 3825
HM Gold 1040 MGA Auto parts 3714
NGC Gold 1040 LSI Semiconductor—specialized 3674
ASA Closed, end fundgold) 6799 u?91
BMG Gold 1040 ABT Drug manufacturers/major 2834
CHL Wireless communications 4813 PEE Drug manufacturers/major 2834
CMB Money center banks 6021 SGP Drug manufacturers/major 2834
CCl Money center banks 6021 LLY Drug manufacturers/major 2834
u9% INJ Drug manufacturers/major 2834
TMX Telecommunication services/foreign 4813 AHC Oil and gas refining/marketing 2911
TV Broadcasting—television 4833 BMY Drug manufacturers/major 2834
MXF Closed, end fundForeign 6726 HAL Oil and gas equipment/services 1600
ICA Heavy construction 1600 WLA Drug manufacturers/major 2834
GTR Heavy construction 1600 BHI Oil and gas equipment/services 3533
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The appearance of strongly correlated pairs of stocks in
] Transportation the eigenvectors corresponding to the smallest eigenvalues of
N 0.4 Paper . C can be qualitatively understood by considering the ex-
= ! Drug Manufacturing ample of a 22 cross-correlation matrix
s l Automotive
= \ 0il & Gas 1 c
2 } anks Cox2= : (21)
8 i c 1
§ 0.2 Latin American firms i
o Gold . _ . )
S Semiconductors—computers The eigenvalues of, areﬂi_—ltc. '_I'he_smalle_r eigen
~ / Large Ca value B8_ decreases monotonically with increasing cross-
ge ~ap. correlation coefficientt. The corresponding eigenvector is
0.0 ' ‘ | | ‘ , , the antisymmetric linear combination of the basis vecté)rs (
20 3.0 40 50 60 70 8.0 and (), in agreement with our empirical finding that the
Eigenvalue relative sign of largest components of eigenvectors corre-

sponding to the smallest eigenvalues is negative. In this
FIG. 13. Schematic illustration of the interpretation of the e|gen-5|mp|e example7 the Symmetnc ||near Comb|nat|0n Of the two
vectors corresponding to the eigenvalues that deviate from the RM5sis vectors appears as the eigenvector of the large eigen-
upper bound. The dashed curve shows the RMT result of@d.  \5jye 8, . Indeed, we find that TXN and MU are the largest
components olu®®® TMX and TV are the largest compo-
One eigenvectory®®) displays a mixture of three industry nents ofu®®, and NEM and NGC are the largest and third
groups—telecommunications, metal mining, and bankinglargest components af?’.
An examination of these firms shows significant business
activity in Latin America. Our results are also represented VII. STABILITY OF EIGENVECTORS IN TIME
;chematically in Fig. 13. A similar classification of stocks We next investigate the degree of stability in time of the
mt?nssfg;%rso;] ;Igr%oor“r;rier:srgw;nig?gislisor? b(;{? |gzg):nwgﬂ?i._ eigenvectors corres_ponding_to_ the eigenvalues that .deviate
move the U-shaped intraday pattern using the procedure (;Fom .RMT result_s. Slnce_dewatlons from R.MT resultg imply
Ref. [58] and computeC. The rationale behind this proce- genuine correlations which remain stab'le in the period used
dure is that, if two stocks are correlated, then the intradai%ﬁ%m dpeuuraece’ \gvfe tierg(ses(;;i)rill?t deviating eigenvectors to show
pattern in volatility can give rise to weak intraday patterns in We firgt identify thep eigen)(./ectors corresponding to the
returns, which in turn affects the content of the eigenvectorﬁ.argest cigenvalues which deviate from the RMT upper
The results obtained by removing the intraday patterns arg und \ . . We then construct @x N matrix D with ele-
consistent with those obtained using the procedure of usinﬁ1 AR e
the residuals of the regression of Ed9) to computeC entsij—{u“j k=1,... pi] :1‘ -+ N NeTxt, we com-
(Table ). OftenC is constructed from returns at longer time PUt® @pxp “overlap matrix” O(t,7)=DaDg, with ele-
scales ofAt=1 week or 1 month to avoid short-time scale MentsO;; defined as the scalar product of eigenvectoof
effects[59]. Serlotdf (starting at timet=t) with u' of periodB at a later
ime t+ 7,

E. Smallest eigenvalues and their corresponding eigenvectors

N
. . . 0jj(t,7)= 2, Dy()Djy(t+7). (22
Having examined the largest eigenvalues, we next focus k=1

on the smallest eigenvalues which show large valuek" of

[Fig. 11]. We find that the eigenvectors corresponding to thdf all the p eigenvectors are “perfectly” nonrandom and
smallest eigenvalues contain as significant participants, paigtable in timeO;; = &;; .

of stocks that have the largest values@f in our sample. We study the overlap matrice® using both high fre-
For example, the two largest componentsibtorrespond to  quency and daily data. For high-frequency data=©448

the stocks of Texas Instrumer(EXN) and Micron Technol- records at 30-min intervglswe use a moving window of
ogy (MU) with C;;=0.64, the largest correlation coefficient length L=1612, and slide it through the entire 2-yr period
in our sample. The largest componentsibfare Telefonos de  using discrete time stepk/4=403. We first identify the
Mexico (TMX) and Grupo TelevisgTV) with C;;=0.59  eigenvectors of the correlation matrices for each of these
(second largest correlation coefficienThe eigenvectou®  time periods. We then calculate overlap matri€g=0,r
shows Newmont Gold ComparfNGC) and Newmont Min- =nL/4), wherene{1,2,3 ...}, between the eigenvectors
ing Corporation(NEM) with C;; =0.50 (third largest corre- for t=0 and fort=r.

lation coefficien} as largest components. In all three eigen-  Figure 14 shows a gray scale pixel representation of the
vectors, the relative sign of the two largest components isnatrix O (t, 7), for different r. First, we note that the eigen-
negative Thus pairs of stocks with a correlation coefficient vectors that deviate from RMT bounds show varying degrees
much larger than the averad€;;) effectively “decouple”  of stability [O;;(t,7)] in time. In particular, the stability in
from other stocks. time is largest fou'°® Even at lags ofr=1 yr the corre-
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FIG. 15. Grayscale pixel representation of the overlap matrix
(O(t, 7)), for 1-day data, where we have averaged over all starting
pointst. Here, the length of the time window used to compOtes
L=965 (=4 yr) and the separation=L/5=193 days used to cal-
culateO;; . Thus, the left figure on the first row is far=L/5 and
the right figure is forr=2L/5. In the same way, the left figure on
the second row is for=3L/5, the right figure forr=4L/5, and so
on. Even for larger~20 yr, the largest two eigenvectors show
large values oD;; .

FIG. 14. Grayscale pixel representation of the overlap matrix_ 193 days. Instead of calculating(t,) for all starting

O(t,7) as a function of time for 30-min data for the 2-yr period pointst, we calculateO(r)=(O(t, 7)), averaged over al

1994-1995. Here, the gray scale coding is such that black corre?rl L/5, wheren 6{0’1’2 " '}' Figure 15 shows gray scale

sponds t00;;=1 and white corresponds 1;;=0. The length of representations o® (7) for increasingr. We find similar

the time window used to compu@ is L=1612 (=60 day$ and results as found for_shorter time scales, and flnd that eigen-
the separatior=L/4=403 used to calculate successdg. Thus, ~ VECIOrs corresponding to the largest two eigenvalues are
the left figure on the first row corresponds to the overlap betweerstable for time scales as large &s 20 yr. In particular, the

the eigenvector from the startirig- 0 window and the eigenvector eigenvectoru*?? shows an overlap of0.8 even over time
from time windowr=L/4 later. The right figure is for=2L/4. In ~ scales ofr=30 yr.

the same way, the left figure on the second row is#et3L/4, the
r|gh[ figure for 7-=4|_/4, and so on. Even for |argea:gl yr, the VIII. APPLICATIONS TO PORTFOLIO OPTIMIZATION

largest four eigenvectors show large value<y. The randomness of the “bulk” seen in the previous sec-

sponding overlap=0.85. The remaining eigenvectors show tions has implications in optimal portfolio selectifo]. We
decreasing amounts of stability as the RMT upper baupd  illustrate these using the Markowitz theory of optimal port-
is approached. In particular, the three to four largest eigenfolio selection[3,17,60,61 Consider a portfoliolI(t) of

vectors show large values @f; for up tor=1 yr. stocks with pricesS . The return orlI(t) is given by
Next, we repeat our analysis for daily returns of 422 N

stpcks using 8685 records qf 1-qay returps, and a sliding fD:z w,G;, 23

window of length L=965 with discrete time step&/5 i=1
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50 ' ' ' ' folios, we also compute the risR? realized during 1995
40 - predicted using Cys [Fig. 16a)]. We find that the predicted risk is
30 N\ significantly smaller when compared to the realized risk,
20 realized 1 ) )
10 (a) C (Original) e 170%. (25)
QZ
@ 0 1 1 1 1 p
£ 50 T T T
£ 40| opredicted = 20— < ] Since the meaningful information i@ is contained in the
B .. . . .
R 1 deviating eigenvectoréwhose eigenvalues are outside the
realized RMT boundg, we must construct a “filtered” correlation
20 , ] matrix C’, by retaining only the deviating eigenvectors. To
10 (b) C (Filtered) - this end, we first construct a diagonal matfix, with ele-
0 . . . . ments A{;={0, ... ,ONogg, - - - A1gog. We then transform
0 20 4OR' kqeo 80 100 A’ to the basis ofC, thus obtaining the “filtered” cross-
[AY (4

correlation matrixC’. In addition, we set the diagonal ele-
FIG. 16. (a) Portfolio returnR as a function of riskD2 for the ~ mentsCj;=1, to preserve TiC)=Tr(C")=N. We repeat the

family of optimal portfolios(without a risk-free assptonstructed above calculations for finding the optimal portfolio usigg

from the original matrixC. The top curve shows the predicted risk instead ofC in Eq. (24). Figure 1@b) shows that the realized

DS in 1995 of the family of optimal portfolios for a given return, risk is now much closer to the predicted risk
calculated using 30-min returns for 1995 and the correlation matrix

Cg, for 1994. For the same family of portfolios, the bottom curve 02-02
shows the realized rile)r2 calculated using the correlation matrix ’—2"%25%_ (26)
Cgs for 1995. These two curves differ by a factor Bf/D;~2.7. Q5

(b) Risk-return relationship for the optimal portfolios constructed
using the filtered correlation matri€’. The top curve shows the Thus, the optimal portfolios constructed usi@g are signifi-
predicted riskDﬁ in 1995 for the family of optimal portfolios for a  cantly more stable in time.
given return, calculated using the filtered correlation ma@gy.
The bottom curve shows the realized ri3k for the same family of
portfolios computed usin@gs. The predicted risk is now closer to
the realized risk:Df/Dgwl.ZS. For the same family of optimal How can we understand the deviating eigenvalues, i.e.,
portfolios, the dashed curve shows the realized risk computed usinggrrelations that are stable in time? One approach is to pos-
the original correlation matrigs for which D?/D3~1.3. tulate that returns can be separated into idiosyncratic and
common components, i.e., that returns can be separated into
whereG;(t) is the return on stockandw; is the fraction of  gjfferent additive “factors,” which represent various eco-
wealth invested in stock The fractionsw; are normalized npomic influences that are common to a set of stocks such as
such thats{L,w;= 1. The risk in holding the portfolidI(t)  the type of industry, or the effect of neVi4,36—54,62,68
can be quantified by the variance On the other hand, in physical systems one starts from the
interactions between the constituents, and then relates inter-
actions to correlated “modes” of the system. In economic
systems, we ask if a similar mechanism can give rise to the
correlated behavior. In order to answer this question, we
whereg; is the standard deviatiof@verage volatility of G;, ~ model stock price dynamics by a family of stochastic differ-
and C;; are elements of the cross-correlation matixIn ~ ential equation§64], which describe the “instantaneous” re-
order to find an optimal portfolio, we must minimize2  turnsg;(t) =(d/dt)In§(t) as a random walk with couplings
under the constraint that the return on the portfolio is soméij:
fixNed value®. In addition, we also have the constraint that .
>N w;=1. Minimizing Q2 subject to these two constraints _ 3 -
cé\nlbe implemented by using two Lagrange multipliers, 700:9i(1) =~ 1iGi(1) ~ g (t)+; Jigi(+ Togi(t).
which yields a system of linear equations fer, which can (27)
then be solved. The optimal portfolios thus chosen can be
represented as a plot of the retubnas a function of risk22 Here, &;(t) are Gaussian random variables with correlation
[Fig. 16]. function (&;(t)&;(t"))= 8 7,6(t—t"), and 7, sets the time
To find the effect of randomness & on the selected scale of the problem. In the context of a soft-spin model, the
optimal portfolio, we first partition the time period 1994 — first two terms in the right-hand side of E7) arise from
1995 into two one-yr periods. Using the cross-correlationthe derivative of a double-well potential, enforcing the soft-
matrix Cq, for 1994, andG; for 1995, we construct a family spin constraint. The interaction among soft spins is given by
of optimal portfolios, and plotb as a function of the pre- the couplingsJ;;. In the absence of the cubic term, and
dicted ristS for 1995[Fig. 16@)]. For this family of port-  without interactions, 7,/r; are relaxation times of the

IX. CONCLUSIONS

N N
Qz:i:El 121 WinCijO'iO'j, (24)

066126-14



RANDOM MATRIX APPROACH TO CROSS. .. PHYSICAL REVIEW E 65 066126

o
(V)

(gi(t)g;(t+ 7)) correlation function. The retur@; at a finite
time intervalAt is given by the integral of; over At.

Equation(27) is similar to the linearized description of
interacting “soft spins”[65] and is a generalized case of the
models of Ref.[64]. Without interactions, the variance of
price changes on a scalet>7; is given by ((G;(At))?)
=At/(r?r), in agreement with recent studi¢g6], where
stock price changes are described by an anomalous diffusion
and the variance of price changes is decomposed into a prod-
uct of trading frequencyanalog of 1#;) and the square of an
“impact parameter” that is related to liquidityanalog of
1/r).

As the coupling strengths increase, the soft-spin system . .

L . 0.0

undergoes a transition to an ordered state with permanent 0 5 10
local magnetizations. At the transition point, the spin dynam- 1 (hr)
ics are very “slow” as reflected in a power-law decay of the
spin autocorrelation function in time. To test whether this 0.8 T -
signature of strong interactions is present for the stock mar-
ket problem, we analyze the correlation functioti¥(7)
=(GM)GM(t+ 7)), where GM(t)=310UkG(t) is the
time series defined by eigenvectaf. Instead of analyzing
c®(7) directly, we apply the detrended fluctuation analysis
(DFA) method[67]. Figure 17 shows that the correlation
functionsc¥(7) indeed decay as power lay}68] for the
deviating eigenvectors*—in sharp contrast to the behavior
of cW(7) for the rest of the eigenvectors and the autocorre-
lation functions of individual stocks, which show only short-
ranged correlations. We interpret this as evidence for strong

(999)
(

01 r

Autocorrelation function c

DFA exponent

interactiong 69]. 0.3 . .
In the absence of the nonlinearitiésubic term, we ob- ’ 10° 10' 10°
tain only exponentially decaying correlation functions for the Eigenvalue )
“modes” corresponding to the large eigenvalues, which is
inconsistent with our finding of power-law correlations. FIG. 17. (a) Autocorrelation functiorc®(7) of the time series

To summarize, we have tested the eigenvalue statistics §fined by the eigenvectar®. The solid line shows a fit to a
the empirically measured correlation mati& against the ~PoWwer-law functional formz~ 7« whereby we obtain valueg
null hypothesis of a random correlation matrix. This aIIowstﬁlto'g& (b) To quantify the i"pone?]tsgk ffor all kl ,
us to distinguish genuine correlations from “apparent” cor- -~ & - - -»1000 eigenvectors, we use the method of DFA analysis
relations that are present even for random matrices. We fin[:?s] often used to obtain accurate estimates of power-law correla-
that the bulk of the eigenvalue spectrum@fhares ur.liver- tions. We plot the detrended fluctuation functié(r) as a function

. . . of the time scaler for each of the 1000 time series. Absence of

sal properties with the Gaussian orthogonal ensemble of ran- 05

. . long-range correlations would impl¥(7) ~7°°, whereasF(7)
dom matrices. Further, we analyze the deviations from RMT,_ &\ g e implies power-law decay of the correlation

and find that(i) the largest eigenvalue and its corresponding,ction with exponenty=2—2v. We plot the exponents as a
eigenvector represent the influence of the entire market on agntion of the eigenvalue and find values exponensignificantly
stocks, andii) using the rest of the deviating eigenvectors, jarger than 0.5 for all the deviating eigenvectors. In contrast, for the
we can partition the set of all stocks studied into distinCtremainder of the eigenvectors, we obtain the mean vaki@.44
subsets whose identity corresponds to conventionally identi+ 0.04, comparable to the value=0.5 for the uncorrelated case.
fied business sectors. These sectors are stable in time, in

some cases for as many as 30 years. Finally, we have seen

that the deviating eigenvectors are useful for the constructioBritish Petroleum, the NIH, and the National Center for Re-
of optimal portfolios that have a stable ratio of risk to return.search Resourcd&rant No. P41 RR136232
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new variables called “unfolded eigenvalue&”, whose dis- in Eg. (A2) using a series of Gaussian functions. Consider
tribution is uniform[11-13. Unfolding ensures that the dis- the eigenvalue distributioR(\), which can be expressed as
tances between eigenvalues are expressed in unitscaf N
mean eigenvalue spaciidl], and thus facilitates compari- 1
son with analytical results. PM=F ;1 S(A=Nj). (AS)

We first define the cumulative distribution function of ei-
genvalues, which counts the number of eigenvalues in the

interval A<\, The & functions about each eigenvalue are approximated by
N choosing a Gaussian distribution centered around each eigen-
F()\):NJ P(x)dx, (A1) value_ with standard deviatiol\, ,— \_5)/2, where &_ls
—o the size of the window used for broadeniiti]. Integrating
N ) ) Eq. (A5) provides an approximation to the functiéi,(\)
where P(x) denotes the probability density of eigenvaluesjn the form of a series of error functions, which using Eq.

andN is the total number of eigenvalues. The functlf\)  (A4) yields the unfolded eigenvalues.
can be decomposed into an average and a fluctuating part,

FN)=FadN) +Fpuc(N). (A2) 2. Fitting the eigenvalue distribution
SincePg,.=dFg,(\)/d\=0 on average, Phenomenological procedures are likely to contain artifi-
cial scales, which can lead to an “overfitting” of the smooth
P (\)= dFa(N) A3 partF,(\) by adding contributions from the fluctuating part
m(N)= dn (A3) Fauc(N\). The second procedure for unfolding aims at circum-

_ _ _ _ _ venting this problem by fitting the cumulative distribution of
is the averaged eigenvalue density. The dimensionless, ueigenvalued(\) [Eq. (A1)] with the analytical expression
folded eigenvalues are then given by for

&=FaN). (A4)

Thus, the problem is to fin& ,(\). We follow two pro-
cedures for obtaining the unfolded eigenvalggs(i) a phe-
nomenological procedure referred to as Gaussian broadenir\llgnereP
[11-13, and(ii) fitting the cumulative distribution function
F(\) of Eq. (A1) with the analytical expression fd¥(\)
using Eq.(6). These procedures are discussed below.

Fim(M=N f Y P(0dx, (A6)

m(\) is the probability density of eigenvalues from
Eqg. (6). The fit is performed witth_, N, andN as free
parameters. The fitted function is an estimate FQr(\),
whereby we obtain the unfolded eigenvalugs One diffi-
culty with this method is that the deviations of the spectrum
of C from Eq.(6) can be quite pronounced in certain periods,

Gaussian broadeninyQ] is a phenomenological proce- and it is difficult to find a good fit of the cumulative distri-
dure that aims at approximating the functiég(\) defined  bution of eigenvalues to EGAG).
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