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Abstract

We address the question of market efficiency using the Minority Game (MG)
model. First we show that removing unrealistic features of the MG leads to
models which reproduce a scaling behaviour close to what is observed in real
markets. In particular we find that (i) fat tails and clustered volatility arise at

the phase transition point and that (ii) the crossover to random walk
behaviour of prices is a finite-size effect. This, on one hand, suggests that
markets operate close to criticality, where the market is marginally efficient.
On the other it allows one to measure the distance from criticality of real
markets, using cross-over times. The artificial market described by the MG is
then studied as an ecosystem with different species of traders. This clarifies
the nature of the interaction and the particular role played by the various

populations.

1. Introduction

The Minority Game [1,3] (MG) was initially designed as the
most drastic simplification of Arthur’s famous El Farol’s Bar
problem [4]: it describes a system where many heterogeneous
agents interact through a price they all contribute to determine.
The MG is an highly stylized model of such a situation: it
captures some key features of a generic market mechanism and
the basic interaction between agents and public information—
i.e. how agents react to information and how these reactions
modify the information itself. In addition, itallows the study, in
detail, of how macroscopic quantities depend on microscopic
behaviours.

However, the basic MG is such a stylized model of a
financial market that prices are not even explicitly defined.
Furthermore the micro-economic behaviour of agents is quite
simplified: agents have heterogeneous strategies but they enter
the game with the same weight. In other words, there are
not poorer or richer agents and their wealth does not change
according to their performance. Also all agents are constrained
to play, with the same frequency, no matter how much they may
lose. All these unrealistic features makes it hard to accept the
MG as a model of a real financial market, especially when

compared to other agent-based models [5-8] which have so
far been more successful in reproducing the stylized facts of
high-frequency statistics of prices [9].

The same stylized nature of the MG however, allows one
to gain a deep understanding of its extremely rich collective
behaviour: statistical mechanics of disordered systems indeed
allows for a full analytic solution in the limit of infinitely
many agents [10]. More precisely, these techniques allow
one to fully characterize the evolutionary equilibrium of the
dynamical learning process in a truly complex system of
interacting adaptive agents. In a top-down approach to real
financial markets, where complexity is added in steps, the
analytic solution of the MG provides an invaluable starting
point which allows us to keep full control on the emergent
features. Several extensions in this direction were discussed
elsewhere [11-13].

The purpose of the present paper is to advance even
further in this endeavour. First, we show that, by removing
further unrealistic features, and defining a price process in
terms of excess demand, the main stylized facts of high-
frequency price fluctuations are recovered within the MG. In
particular, we allow agents to have different weights in the
market according to their wealth, which evolves as a result
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of their trades'. As in the MG we find a phase transition
between a symmetric (information-efficient) phase and an
asymmetric phase, depending on the ratio o between agents
and information complexity. The symmetric phase, in this
case, is characterized by zero-excess demand and constant
prices and is hence similar to an absorbing phase. Statistical
features such as fat tails in the distribution of returns and long-
time volatility autocorrelation, only arise close to the critical
point «,.

Second, we derive a coherent picture of the collective
behaviour of a market. In this picture, we can regard a
market as an ecology of different ‘species’ of investors, each
playing his particular role. On one side there are traders who
need the market for exchanging goods and are not interested
in speculation. These kind of agents, called hedgers in the
economic literature [16], will be called producers hereafter,
following [30]. On the other, there are bounded rational
agents speculators equipped with inductive thinking and very
heterogeneous strategies, acting as scavengers of information.
We can offer a coherent picture of how the resulting food chain
operates: producers inject a limited amount of information,
upon which a swarm of speculators feed. The two groups
in the market ecology have only partial overlap in interest.
This calls for two parameters to characterize efficiency because
market efficiency is interpreted differently by different players.
Producers would like the information content to be small,
and the fluctuations also small. Whereas speculators would
like small fluctuations, but they prefer when the information
content is large.

Thus, the MG provides a coherent picture of how
markets function which, on one hand is rooted on an
analytic approach providing deep insights into the collective
statistical behaviour and, on the other, is able to reproduce the
main statistical regularities—the so-called stylized facts—of
financial markets.

We keep our discussion as simple and informal as possible.
Formal mathematical definitions and technical details can be
found in the appendix.

2. The MG as a coarse-grained model of
a market

Naively speaking, what agents do in a financial market is
gather information on the present state of the market and
to process it in order to determine an investment strategy.
We call this mapping from information to action a trading
strategy. One can regard a market as an ‘evolutionary soup’
of trading strategies competing against each other [2, 21].
Modelling this system is a quite complex task: first because
trading strategies, in general, live in a very complex and high-
dimensional functional space (especially because of their inter-
temporal nature). Secondly, trading strategies involve all sorts
of details, such as expectations, beliefs, how agents behave
under uncertainty and how they discount the future, which
are heterogeneous across agents. Finally, time constraints and

' Other authors also considered this extension [14, 15]; see section 3.

information or computational complexity may induce agents
to a suboptimal, boundedly rational behaviour [4].

This situation forces one either to models whose
complexity is of the same order of reality, and that are hence
useless, or to work under some simplifying assumptions. The
MG is based on the following simplifications:

1. time is discrete, i.e. market interaction is repeated for a
infinitely many periods;

2. information is discretized in one of P events labelled by
an integer , which is drawn at random, independently in
each period [22];

3. actions are discretized in a binary choice g, (t) € {—1, 1}
at each period ¢ for each agent i;

4. the space of trading strategies is then the set of binary
functions f : (1,...,u,..., P) > (—1,+1);

5. agents are heterogeneous: each agent is endowed with a
finite number S of trading strategies, which are drawn at
random and independently for each agent from the set of
all possible strategies;

6. agents are adaptive: they evaluate the performance of their
strategies while using their best one for actual trading.
The adaptive process is similar to reinforcement learning
dynamics [23,24] but traders behave non-strategically, i.e.
as price-takers (see [10] for more details);

7. the market mechanism is a Minority Game: agents
who took the minority action are rewarded whereas the
majority of agents loses. This captures the fact that
markets are mechanisms for reallocation of resources so
that no gain is possible, in principle, by pure trading. If
some agent gains, some other must lose. With A(r) =
>, a;(t) being the sum of individual actions a; (), a
simple choice of payoffs of minority type is

ui(t) = —a;(HDA@). ey

If A(r) > 0, traders who took a;(t) = —1 win, whereas
those who took a;(t) = +1, which are the majority, lose.

This is a coarse-grained description of a market in the
sense that it does not enter into the details of the behaviour of
agents nor of the market mechanism. Both are considered
as black boxes containing all sorts of complications. We
just retain the key features of (i) heterogeneity and bounded
rationality for agents, and (ii) the minority nature for the market
mechanism.

It needs to be said that such a coarse description also
requires an abstraction of the usual terms such as prices,
volume and excess demand at a more generic level. For
example it is natural to relate A(z), which is the unbalance
between the two group of agents, to the excess demand. Indeed
the latter measures in a real market the unbalance between
buyers and sellers. In view of the statistical nature of the laws
which govern the collective behaviour, and of the robustness
of these laws with respect to changes in microscopic details,
such a stretch of the customary meaning of common economic
terms may be justified.

2 For a more detailed definition of the MG we refer the reader to [10,11,17,18]
as well as to the appendix.
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It is also worth stressing that there is no a priori best
trading strategy in the market depicted by the Minority
Game. This justifies the equiprobability assumption by which
strategies are drawn. Whether a strategy is good or bad cannot
be decided a priori; rather the quality of a strategy depends on
how it will perform against the other strategies present in the
market.

The two features discussed above are enough to reproduce
a remarkably rich behaviour: the key variable is the ratio
o = P/N between information diversity P and the number
N of agents [19]. The collective behaviour is characterized
by the market’s predictability A, and global efficiency o>
(see appendix A.l.). The first (H) measures how the market
outcome A(t) is correlated with the information w(¢), i.e.
whether a positive A(¢) is more or less likely than a negative one
when the informationis . H > 0implies that knowledge of
allows some prediction of the sign of A(¢); accordingly some
agents have a positive gain. The second (62 = — > oi{ui))
is related to the total loss suffered by agents, which means
that the MG is a negative sum game. When few agents are
present (large o) the market is easily predictable (i.e. H > 0)
and agents perform only slightly better than random agents
(who decide their actions on the basis of coin tossing). As
more and more agents are added, the market becomes more
efficient both because agents payoffs increase on average (i.e.
o2 decreases) and because the market becomes less predictable
(i.e. H decreases). A phase transition takes place [17-19]
at a critical value «,, where agents average gain reaches a
maximum and the market’s outcome becomes unpredictable
[17] (H = 0). Below this value of « the market remains
unpredictable (H = 0) and the losses of agents (o2) increase
in a way which is especially dramatic if agents are very
reactive [20]. All these features generalize to a number of
situations* such as (i) including a fraction of deterministic
agents, so-called producers [30] or hedgers [16], who have
but one strategy and can make the market a positive sum
game [11], (ii) allowing for some correlation in the pool of
strategies held by each agent [11], or (iii) allowing for agents
with different constant weights. The phase diagram for this
last case is reported in figure 1 (see the appendix for details on
the calculation).

The emergent picture is that when agents are few, the
market is rich of profitable trade opportunities. These may
attract other agents in the market. As the number of agents
increases, these opportunities are eliminated and the market is
driven towards information efficiency (H = 0). This suggests
that the real markets should operate close to the critical point
o, where profitable trade opportunities are barely detectable.
The process by which the market self-organizes close to the
critical point is more likely to be of evolutionary nature and

3 H is not the only measure of predictability, but is the only one relevant for
standard agents. Different agents can profit from other types of predictability
[11].

4 A qualitatively different behaviour arises, instead, if agents abandon the
price-taking behaviour and account for their market impact. Assuming that
agents behave as price takers, we shall not discuss this case here but rather
refer the interested reader to [10,12,18,20].
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Figure 1. Phase diagrams of the MG with weighted agents for
different distributions of weights w;: power law (full curve) and
stretched exponential (dotted curve) distribution with parameter y .
The results for a uniform distribution is also shown as a dashed
curve. Below the curve corresponding to each distribution, the
market is in the symmetric phase H = 0.

hence to take place on longer time scales’.

There are two unnatural features in the MG at this stage:
first agents are always constrained to play, even if they lose a
lot, and second the performance of an agent does not affect his
wealth. In reality each trader is allowed only to lose a finite
amount of money, after which it goes bankrupt and exits the
game. In the following we shall see that the correction to these
two shortcomings leads indeed to quite realistic results °.

3. The MG with dynamical capitals

How is this scenario modified if one accounts for the fact that
agents have a fixed budget ¢; which itself evolves as a result
of their trading? We address this issue by making c; (1)—
the capital held by agent i at time /—a dynamical variable
and assuming that each agent i invests a fraction € of it in the
market. Speculators have no other gain than that resulting from
trading, so that ¢; (¢) evolves as aresult of it. On the other hand,
producers, who have other revenues and use the market for
reallocation of resources, always invest a fixed quantity (see the
appendix for more details). Inaloose sense the model becomes
evolutionary. Indeed poorly performing strategies lead to
capital losses and are therefore washed out of the market. On
the other hand good strategies imply capital increase, which
enhances the negative effects of market impact. As a result
capitals adjust in order to balance strategy’s performance and
market impacts.

Similar models with dynamical capitals, based on the
Minority Game, have been studied in [14, 15]. Reference [14]

5 This indeed agrees with the fact that self-organized criticality generically
arises in a system where the dynamics leading to internal reorganization of
the system occurs on a much faster time scale than that characterizing the
dynamics of external perturbations (see e.g. [29]).

6 See also [15].
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Figure 2. Behaviour of the MG with dynamic capitals as a function
of a: fluctuation of returns (r2) (o) and average wealth of
speculators (¢). The system is composed of 50 producers and 50
speculators. Simulations were carried out for a number of time steps
large enough to reach a stationary state (which typically requires 10°
time steps). The results depend very weakly on €, as long as it is
small, and on the distribution of wealth of producers: a power-law
distribution with exponent 3/2 (open symbols) yields very similar
results to those obtained with an exponential distribution (full
symbols).

expands in much detail on the micro-economics of these types
of models and explores how collective behaviour depends on it.
The agent based models discussed in [15] also pay considerable
attention to realism at the micro-economic level. The price for
this is that one needs to introduce many parameters which
implies that one loses contact with the picture provided by
the analytic solution to the MG [18]. Our approach is instead
based on this picture and aims primarily at establishing what
elements of this picture persist when the complexity of the
model increases. Key questions, for us, are whether the phase
transition is robust to such changes and whether anomalous
scaling of price returns [9] is related to the critical point or not.
As we shall see, we find positive answers in both cases, which
open a new perspective on the market’s efficiency.

The results of numerical simulations, as a function of
«, are shown in figure 2. As the information complexity
P decreases (or as the number of agents increases), i.e. as
« decreases, the market becomes less and less predictable.
Again at a critical value «, the market becomes unpredictable.
Actually the dynamics of ¢; (¢) reaches a point where the return
r# to the investment under information p vanishes for all
uw = 1,..., P. Hence the phase « < «, is an absorbing
phase where no dynamics actually take place. The statistical
properties of the stationary state are in principle accessible to
an analytic approach along the lines of [10, 18] for ¢ <« 1 as
discussed in the appendix. Interestingly, ot also marks the
point where the relative wealth of speculators is maximal, as
canbe seenin figure 2. The distribution of wealth across agents
falls off exponentially, with a characteristic wealth which is
maximal at «,..
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Figure 3. Probability density function (PDF) of returns (rescaled to
unit variance) for ¢ = 0.64 = %, 0.80 = %, 1.09 = %,

1.98 = % Tails become fatter and fatter as the critical value

o, & 0.6 is approached.
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Figure 4. Volatility correlation function (|r(¢)||7(0)]) — (|r(0)|)? of

absolute returns for o = 0.64 = %, 0.80 = %. The exponent of

the autocorrelation function is about —0.64 for « = 0.64.

Having defined returns from trading, one can define a
price p(t) as the sum over time of returns (see the appendix
for more details). Then one can investigate the statistical
properties of the price time series and compare it to empirical
findings [9]. Remarkably figure 3 shows that fat tails similar
to those observed in real markets emerge close to the critical
point .. In addition, figure 4 shows that volatility clustering
also emerges close to the critical point: the correlation function
of absolute values of returns has an algebraic decay with time
close to o, which turns into an exponential decay away from
criticality.

The dynamics of ¢;(¢) gives an evolutionary character to
the model, because poorly performing agents are driven out of
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Figure 5. Probability density function (PDF) of returns (rescaled to
unit variance) for different time lags dr = 1, 4, 16 and 64. The
market is composed of N; = 100 speculators with dynamic capitals
(e =0.1)and N, = 10 producers (v; = 1). Speculators can decide
not to play and those who lose all their capital are replaced by new
agents with random strategies and ¢; = 1. o = 0.5 (left) and 0.64
(right).

the market. Indeed, asymptotically, a finite fraction of agents
end up with ¢; = 0. Evolutionary selection in the market can be
introduced assuming that agents with ¢; < w < 1 are replaced
by new agents, which enter with an initial capital ¢; = 1 and
random trading strategies. A further modification of the model
lies in removing the unrealistic feature of forcing agents to
trade at each time step. It seems reasonable to allow agents
not to trade, if their trading strategies perform poorly’ [15].
The phase transition separating an information efficient phase
o < a, from an inefficient phase @ > «, survives all these
modifications®. Figure 5 shows that the rescaled PDF of returns
on different time lags Az collapse quite well close to o, ~ 0.5
whereas a clear crossover to Gaussian behaviour occurs for
0.64. In other words, the crossover to a Gaussian
distribution of the distribution of returns p(t + At) — p(¢)
occurs for a characteristic time lag Afy which increases as
one approaches the critical point «.. This is reminiscent of
critical phenomena in statistical physics [28] where correlation
length and times diverge as the distance o — o, to the critical
point vanishes. In this framework of critical phenomena, the
crossover to a Gaussian PDF manifests itself as a finite size
scaling phenomenon. Hence a measure of crossover times At
in real markets allows one to estimate the parameter o, or its
distance to criticality, in that market. This calls for a systematic
study of the relation between Aty and |@ — «.| which goes
beyond the scope of the present paper and shall be discussed
elsewhere.

o =

7 This is accomplished by assigning to each speculator a special strategy,
called the O-strategy, which prescribes not to trade (¢; = 0), whatever the
information w is.

8 The value of o, is non-universal, i.e. it depends on the parameters of the
model.

It is also tempting to speculate that this relation between
« and time scales tells us how the number of market-relevant
events over a time window At increases as the window size
At increases. At o, all the original P events have lost
their information content, hence the market is invariant under
time rescaling. At « = o, + €, the unexploited information
remaining in the market is amplified by time rescaling. In other
words, the information becomes more and more detectable on
larger and larger time scales. This is consistent with figures 3,
4 and 5, which show that the market at longer and longer time
scales looks less and less critical®.

The crossover times to Gaussian behaviour can be
measured in real markets. Its relation to the distance |o — o |
from the critical point may serve as a basis to classify real
markets according to their distance from criticality.

4. Market ecology

The artificial financial market described by the Minority
Game can be regarded as an ecosystem where different types
of species of traders interact. The three main species are
producers, who trade in a deterministic way, speculators, who
are adaptive, and noise traders, who behave randomly (see the
appendix). The interaction between these three species, which
was first studied in [11], will be the subject of the present
section.

We shall discuss the Minority Game with fixed capitals,
for which we can rely on analytic results [18]. This allows us to
quantify the effect of the change in concentration of one species
on itself, on the other species and on the global behaviour.

As a measure of the efficiency of the market, one can take
the signal-to-noise ratio, which in the present context is simply
H/(0?> — H). This accounts for the fact that even if some
profitable trading opportunities exist (i.e. H > 0), they can
only be detected if their intensity exceeds that of stochastic
fluctuations (volatility 0> — H). The signal-to-noise ratio
gives a measure of efficiency which is particularly relevant
for speculators. A second measure of efficiency is volatility:
market participants take into account expected payoffs and risk,
in a proportion related to their risk aversion (and their time
horizon). While speculators or noise traders may be close
to risk neutral, producers are risk averse; for the latter, the
fluctuations are a more relevant measure of efficiency.

The impact of noise traders on the market ecology, as
discussed elsewhere [11], is easy to characterize. They do
not contribute to H, but they contribute to the losses ol
Noise traders do not affect the payoffs of other species. They
only contribute to volatility (see the appendix). We shall
then concentrate on the interaction between speculators and
producers. Figure 6 illustrates the effects of adding an agent
to a market with a fixed number of producers, as the number

9 The opposite limit of high frequencies suggests even more tempting
speculations: the singularities arising in this limit are reminiscent of those
arising from quantum field theories of interacting particles. This similarity
suggests that renormalization group approaches, a technique for studying
scale-free systems, may be helpful to explain interacting markets at high
frequencies.
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Figure 6. Signal-to-noise ratio (a), volatility (b) and payoffs of agents ((c) for speculators, (d) for producers) for a market with n,, = 1 as a
function of the (reduced) number 7, of speculators. Each graph also shows the variation of the corresponding quantities if the number of
producers (dotted curves) or speculators (dashed curves) increases. The figures refer to the asymmetric phase H > 0 (n, < n}).

of speculators varies (both numbers are computed in units of
P, see appendix).

The signal-to-noise ratio decreases if new speculators
enter the market and increases as the number of producers
increases. The volatility however increases with the number
of speculators and decreases with the number of producers: as
the number of speculators increases, the market becomes less
predictable and the speculators themselves are less and less
efficient in exploiting the information present in the market.
This results in the increase of volatility. On the other hand,
increasing the number of producers makes the speculators
behave more efficiently. The payoff of the producers, which is
always negative, increases with the number of speculators and
it decreases with the number of producers themselves. This
suggests that the relationship between these two species may
be better described as symbiosis than as competition. Indeed,
generally the payoff of the speculators also increases if the
number of producers increases. But as figure 6 shows, the

situation for the speculators is more complex than that: if
is large enough (i.e. above the dotted curve in figure 7), the
gain of the speculators decreases if another producer enters
the game. Furthermore, close to the boundary n(n,) of the
symmetric phase, the gain of the speculators increases if a
new speculator is added. This suggests that the relationship
among the speculators cannot be described as competition in
this region (below the dashed curve in figure 7). The phase
diagram in the plane (ny, n,), shown in figure 7, summarizes
this behaviour.

This surprising result highlights the complexity of the
interacting market system described by the Minority Game.
The advantage of the Minority Game with respect to other
agent based models, is that this complexity can be investigated
in detail analytically, for simple cases.
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Figure 7. Phase diagram of the MG in the (n,, n,,) plane. The
symmetric phase, where H = 0, is the shaded area in the lower-right
corner. The payoff G, to speculators is positive in the upper-left
shaded region. Above (below) the dotted curve, an increase in the
number n,, of producers causes a decrease (increase) in the payoff
G, of speculators: i.e. dG,/dn, < 0 (respectively 0G,/on, > 0).
The dashed curve separates a region (left) where speculators are in
competition (i.e. dG,/dn; < 0), from a region (right) where G,
increases with n;.

5. Conclusions

The MG is not just a toy model, but a rather good starting point
for modelling markets. By removing one by one its unrealistic
features, one obtains little by little stylized facts like fat tails
and algebraic decay of the volatility auto-correlation function;
in addition, the correspondence between stylized facts and
additional features put into the MG is very instructive.

But the MG is not only able to reproduce stylized facts. It
is an extremely powerful tool to explore the interplay between
different types of agents, and efficiency, which can be well
defined in this model. The measure of efficiency should depend
on which type of agent is considered: for instance, speculators
are likely to be interested in the signal-to-noise ratio, whereas
producers are more concerned with fluctuations.

Information, the price mechanism and agents behaviour
in real markets may be very different from those assumed
in the MG. However, if the collective behaviour of the
market is due to statistical laws, we expect it to be largely
independent of microscopic details. From this point of view,
we expect the MG can say something about real markets. For
example, the phase transition from symmetric (unpredictable)
to asymmetric (predictable) markets is a very robust feature
of MGs. On one hand we also expect a similar transition in
real markets, on the other we show how the distance from the
critical point can be estimated.

Further efforts to calibrate the MG to reproduce the
statistical features of a given market are certainly necessary
to pursue this line of research.

Appendix A. Definition of the MG

Let A\ be the set of agents engaged in the Minority Game and
N = |N| be their number. At each time ¢, each agenti € N
takes an action a; (¢), which is a real number quantifying his
individual demand. The market interaction is defined in terms
of the ‘excess demand’ at time ¢, which is:

A=Y ai(t). (A.1)
ieN
The ‘volume’ of trades is defined as
V()= lai)l. (A2)
ieN
Let the return, at time ¢, be r(t) = —A(t)/V(¢) so that the
payoffs to each agenti € N is
a;(1)A()
(O =a;Ort) = ——F"—-= A3
&) = a;(t)r(t) V) (A.3)

This structure of interaction has the minority nature discussed
in the text: if A(¢) > O it is convenient to choose a;(f) < 0
and vice versa.

Asin [6,14,15,21,25], we define a price process by:

logp(t+1) =logp(t) +r(t) =logp(t) — % (A4)
These equations are also the simplest ones dictated by
dimensional analysis: g; has the same units as excess demand
A and return r and log p are dimensionless (note that in [11]
g was not normalized to the number of agents).

Agents observe public information, which can take one
of P forms, labelled by an integer. 1(¢) is the information at
time ¢, which we assume here to be randomly drawn at each
time'?. We distinguish three types of agents according to their
behaviour with respect to information:

rand ieN,
ai(t) = { v ieN, (A.5)
t .
w; (t)ai’fsf(),) i €N

The first type of agent (V) shall be called noise traders.
They totally disregard information and take actions at random
(i.e. with no correlation to w(t)). For example a;(t) =
+1 or —1 with equal probability. The second type, called
producers (N,), behaves in a deterministic way, given w(z).
v; is the amount they invest in the market and o/ is a
random function of u into {1}, drawn independently for
eachi € N, »- These functions are refered to as strategies,
but producers do not optimize their behaviour: they only have
one strategy. Speculators, which are the third type of trader
(N, in equation (A.5), can instead optimize their behaviour
dynamically: they have S strategies, o/ , labelled by the index

i,s°
s = 1,..., 8, and can choose the one which performs best,

10 Much of what follows can be extended to the original case where w(t)
encodes the sign of A(#') in the last log, P periods of the game [27].
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by adjusting s.!! Strategies are again drawn randomly and

independently for each i and s. The amount w; invested by
speculator i will be discussed below. Hence N = N, UN,UN
and N = N,+N,+N, where N, = N, is the size of population
of type x = n, p or s. The MG has been introduced with
N, = N, = 0and w; = 1, Vi € N,. The case N, > 0,
N, > 0 was first discussed in [11], always with w; = v; = 1.
For these cases an analytic solution in the limit N — oo has
been found with P/N; = «, N,/N;, = p and N,/N; =
fixed. Rather than using these parameters, we prefer to discuss
our results in the rescaled population variables:

The key quantities of interest are

__ 1 &
ol = (A% =5 ;Ww, (A7)

which is proportional to the total losses of agents Y, \(gi) =
—0?%/V, and

— 1

_ _ 2
H=(A) = 7 2.tAln)

—

(A.8)

M~

n=1

which measures the predictability of the market’s outcome
A(t). Here and below, the average over p is denoted by an
overbar and the time average, conditional to u(t) = pu, is
denoted by (-|u).

Appendix B. Analytic solution with

w; =v; = 1

The MG with speculators, producers and noise traders and
fixed capitals, has been studied in [11]. We refer the interested

reader to that work and report here only the final expressions
of the analytic solution [11] in terms of the parameters n,:

1+0Q
2

H = P[1 —ngerf ()] [ ng +n1,:| (B.1)

where n, = N, /P forx = s, p, n are reduced concentrations.
Q is a function of z

2

e ? 1
=1—-——(1—— Jerf B.2
0 NE ( 212) erf (2) (B.2)
and z = z(n,, n,) is the solution of the equation
2[(1 + Q)ny +2n,17% = 1. (B.3)

Note that H only depends on n; and n,. Noise traders have no
effect on it. Reference [11] finds

1—
Qns +n,l>.
2

I This is done by assuming that agents assign scores U; (¢) to each of their
strategies. Scores are updated according to the virtual performance of a
strategy s: U;s(t +1) = Ui (1) + w,-ai’g(’)r(t). See [10,20] for a discussion
of issues related to this type of learning.

02:H+P< (B.4)

The payoff of producers is

1
Gy= (g) = ”7”[——erf(z)] (B.5)

i ng+n,+n, [n

and that of noise traders is simply G, = —n, /(ns +n, +n,).
The payoff of speculators is then G, = —0?/N — G, — G,
with N = N; + N, + N,. These expressions were used to
produce the results in the text.

Appendix C. MG with heterogeneous
weights of agents

The analytic solution generalizes easily to the case where the
weights w; of the agents are randomly drawn from a given PDF
P (w) at the beginning of the game and kept fixed afterwards.
For simplicity we deal with the case n, = n, = 0 and
ny = 1/a > 0, though other cases are easily dealt with.
Without loss of generality, we can fix the ‘scale’ of A(r) by
imposing that the average wealth is (w;) = 1 (a different value
of (w;) is restored by dimensional analysis). If (wiz) < 00,
following the same calculation as in [10, 11, 18], we find that

H = P{w?),(1+0)[1 —nylerf (wz)),] (C.1)

2,2

where (- - -),, stands for averages over the distribution P (w),
(we_w z )117

{we™ )y (51 \erfwz)
VT (w?)yz <<w 212) (w?)y >w €2

and z is the solution of the equation

0=1-

222w, (Q+1) = 1. (C.3)
The order parameter Q is defined, in this case, as
1 Y 2 2
0= N ; wim; (C.4)

where m; is the ‘local magnetization’ of agent i, i.e. the excess
probability with which i plays the strategy s; = +1. Also
0?2 = H+ P{w?),(1 — Q)/2. The phase transition occurs for
a critical n} such that n (erf (wz)),, = 1.

These equations hold as long as (w?),, is finite. When
the second moment of w; diverges, i.e. when P(w) ~ w™"~!
for w > 1 with y < 2, one expects large fluctuations and no
self-averaging. Indeed, sums of the form ), wl.z(- --), which
define order parameters, are dominated by the richest agent and
scale with N faster than linearly (}_; wi2 ~ N?/7). These sums
do not satisfy laws of large numbers and the rescaled variable
N=27 3" w?(...) does not converge to a constant, as in the
law of large numbers, but rather fluctuates for all N. Standard
statistical mechanics approaches break down in these cases.

Appendix D. MG with dynamical capitals

In real markets, the weight of each agent is not a fixed quantity,
for instance because her capital evolves in time. We generalize
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the MG in order to account for this very important fact. Each
speculator i € N has a capital ¢;(¢) and invests a fraction €
of it in the market: Hence w;(t) = ec;(¢). The capital of a
speculator evolves in time according to his performance:

at+1) = () +8(1) = @[l +ea! ) r)].  (D.D)

i,s;(t
If agenti loses (g;(¢) < 0) his capital decreases and vice versa.
Without producers, the gain of the speculators is always
negative and hence the total capital of speculators decreases
and tends to zero. When producers are present, the total capital
of speculators adjusts so that speculators have (g;) = 0 and a
stationary state is possible. This is in principle accessible to
an analytic calculation [18] for € < 1. In this case indeed one
canrely on an adiabatic approximation where strategies adjust
instantaneously to any small change in capitals ¢;(¢). This
implies that one may consider ¢; () as ‘quenched disorder’ (as
in the previous calculation) and impose, self-consistently, that
logc;(t) is a stationary process (i.e. (log[c;(t +1)/c;(¢)]) =
0). Though feasible, this approach involves quite complex
calculations.
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